Solid-state graft copolymer electrolytes for lithium battery applications.

نویسندگان

  • Qichao Hu
  • Antonio Caputo
  • Donald R Sadoway
چکیده

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Copolymer Electrolytes Polymers for Solid-State Lithium Batteries

Bergfelt, A. 2018. Block Copolymer Electrolytes. Polymers for Solid-State Lithium Batteries. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1630. 68 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0233-1. The use of solid polymer electrolytes (SPEs) for lithium battery devices is a rapidly growing research area. The liquid electr...

متن کامل

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries

Microphase separated block copolymers consisting of an amorphous poly~ethylene oxide! ~PEO!-based polymer covalently bound to a second polymer offer a highly attractive avenue to achieving both dimensional stability and high ionic conductivity in polymer electrolytes for solid-state rechargeable lithium batteries. However, due to the strong thermodynamic incompatibility typically found for most...

متن کامل

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number

The electrochemical properties of a solid polymer electrolyte consisting of a diblock copolymer and lithium bis oxalato borate, LiBC4O8 LiBOB salt, is reported. The spherical microphase-separated diblock copolymer is composed of a majority poly ethylene oxide PEO block and a minority random copolymer block of methyl methacrylate MMA and lithium salt of methacrylic acid MAALi , PEO-bPMMA-ran-PMA...

متن کامل

Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V

Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first ti...

متن کامل

A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2013